Human Neutrophil Cytosolic Activation Factor of the NADPH Oxidase
نویسنده
چکیده
The kinetics of sodium dodecyl sulfate-induced activation of respiratory burst oxidase (NADPH oxidase) in a fully soluble cell-free system from resting (control) or phorbol myristate acetate (PMA)-stimulated human neutrophils were investigated. In a cell-free system containing solubilized membranes and cytosol fractions (cytosol) derived from control neutrophils (control cell-free system), the values of K, and V,,,,, for NADPH of the NADPH oxidase from control neutrophils continuously increased with increasing concentrations of cytosol, but with increasing concentrations of solubilized membranes from the control neutrophils, K, values continuously decreased, suggesting cytosolic activation factor-dependent continuous changes in the affinity of NADPH oxidase to NADPH. In a cell-free system containing solubilized membranes and cytosol prepared from PMA-stimulated neutrophils, NADPH oxidase was not activated after the addition of NADPH. However, cytosol from control neutrophils activated the NADPH oxidase of PMA-stimulated neutrophils in a cell-free system. Cytosol from PMA-stimulated neutrophils did not activate the control neutrophi1 oxidase, although it contained no inhibitors of NADPH oxidase activation. The results suggest that, in PMA-stimulated neutrophils, cytosolic activation factors may be consumed or exhausted with an increasing period of time after the stimulation of neutrophils, and that the affinity of PMA-stimulated neutrophil NADPH oxidase to NADPH may almost be the same as that of control neutrophil oxidase. It was concluded that the affinity of NADPH oxidase to NADPH was closely associated with interaction between solubilized membranes and cytosolic activation factors, as indicated by the concentration ratio.
منابع مشابه
Human neutrophil cytosolic activation factor of the NADPH oxidase. Characterization of activation kinetics.
The kinetics of sodium dodecyl sulfate-induced activation of respiratory burst oxidase (NADPH oxidase) in a fully soluble cell-free system from resting (control) or phorbol myristate acetate (PMA)-stimulated human neutrophils were investigated. In a cell-free system containing solubilized membranes and cytosol fractions (cytosol) derived from control neutrophils (control cell-free system), the ...
متن کاملActivation of neutrophil NADPH oxidase in a cell-free system. Partial purification of components and characterization of the activation process.
The superoxide-generating enzyme of human neutrophils, NADPH oxidase, is converted from an inactive to an active form upon stimulation of the neutrophil. This activation process was examined using a recently developed cell-free system in which dormant oxidase is activated by arachidonic acid in the presence of a soluble factor from the neutrophil (Curnutte, J. T. (1985) J. Clin. Invest. 75, 174...
متن کاملActivation of NADPH oxidase of human neutrophils involves the phosphorylation and the translocation of cytosolic p67phox.
Activation of human neutrophil NADPH oxidase requires the interaction of cytosolic and membrane-associated components. Evidence has been accumulated that in phorbol 12-myristate 13-acetate (PMA)-stimulated neutrophils, the translocation to the plasma membrane of the cytosolic components p47phox and p67phox and the phosphorylation of p47phox are essential steps in activation of NADPH oxidase. No...
متن کاملChronic Granulomatous Disease
The mechanisms regulating activation of the respiratory burst enzyme, NADPH oxidase, of human neutrophils (PMN) are not yet understood, but protein phosphorylation may play a role. We have utilized a defect in a cytosolic factor required for NADPH oxidase activation observed in two patients with the autosomal recessive form of chronic granulomatous disease (CGD) to examine the role of protein p...
متن کاملThe cytosolic subunit p67phox contains an NADPH-binding site that participates in catalysis by the leukocyte NADPH oxidase.
The NADPH-dependent respiratory burst oxidase of human neutrophils catalyzes the reduction of oxygen to superoxide using NADPH as the electron donor and is essential for normal host defenses. To gain insight into the function of the various oxidase subunits that are required for the full expression of catalytic activity, we studied the interactions between the 2',3'-dialdehyde derivative of NAD...
متن کامل